Text size
Line height
Margin
Font
Article layout
Background color 1
Background color 2
Background gradient
Text color
Highlight color

The Energy System that Will Save Us: Designing the Future Together

Abstract

How did energy systems, once the domain of specialists, become an area requiring widespread engagement in designing new solutions and building new alliances? The article explains how the new level of social significance of energy results from the expansion of three previously exceptional situations: moments of system crisis, the importance of infrastructure in the neighbourhood, and the involvement of social movements. Understanding that decisions regarding the shape of today’s energy infrastructure directly determine future living conditions – including the composition of the atmosphere, and consequently, climate parameters – prompts the inclusion of previously absent concerns and voices in the decision-making process on energy system. This demands new skills and procedures. Faced with this challenge, based on the author’s research experiences, the text reflects on a new protocol for collective investigation – a turn towards transdisciplinary research – viewed as changes in the research and design process in the field of energy system. These changes allow us to harness the potential of groups that have traditionally been mere recipients of ready-made solutions.

Suddenly It’s Everyone’s Business

Ever since broad and steady access to electricity became standard, we have accepted that the energy system is managed by “them:” experts from the industry, electrical engineers, and the electric utilities established for this purpose. The rest of us play the role of consumers, carelessly using electricity, our sole duty being to pay the bills, of which we do not really understand much anyway   1  1  P. Devine-Wright., Energy citizenship: Psychological aspects of evolution in sustainable energy technologies. [w:] Governing Technology for Sustainability, red. Murphy J., https://doi.org/10.4324/9781849771511. (data dostępu 29.05.24) ↩︎. We are sometimes reminded to turn off the lights, and in less affluent households, energy bills can constitute a significant burden, but most of us do not have to worry about electricity access. Let us keep in mind that this is an outstanding achievement, and one that is far from universal: about 940 million people around the world are living with no electricity whatsoever   2  2  H. Ritchie, M. Roser, 2020 – Energy. OurWorldInData.org. ourworldindata.org/energy (data dostępu 06.10.21) ↩︎. Where electricity is not available “on demand,” healthcare and education are impeded, as are work and business development, access to entertainment, and equality among genders   3  3  B.R. Irwin, K. Hoxha, K.A. Grépin, Conceptualising the effect of access to electricity on health in low- and middle-income countries: A systematic review, „Global Public Health”, 15:3/2020, 452–473, DOI: 10.1080/17441692.2019.1695873 (data dostępu 29.05.24); B.A. Bridge, D. Adhikari, M. Fontenla, Electricity, income, and quality of life, „The Social Science Journal”, 53:1/2016, 33–39, doi.org/10.1016/j.soscij.2014.12.009 (data dostępu 29.05.24) ↩︎.

 

 

In Poland, we have mostly been taking the abundance of electricity for granted: it seems so obvious that it is almost transparent. There are two significant exceptions from this normal state of affairs: one is blackouts, which from time to time cut thousands of users off from electricity as well as do more minor interruptions occurring locally, for example, related to transmission line failures, which in certain parts of the country, appear perfectly normal; we are aware that we need to be prepared with candles and torches for such an eventuality. The other exception is where electricity plays a more visible role in people’s lives, generally in the regions responsible for delivering it to everybody else: in mining regions and near power plants. While these regions are burdened with damage to the environment and to people’s health resulting from industry operations; on the other hand, their local communities often profit from having stable well-paid jobs and a common identity built around a mine or power plant   4  4  see e.g. X. Bukowska, K. Iwińska red., Gender and Energy Transition: Case Studies from the Upper Silesia Coal-mining Region, Springer, Berlin/Heidelberg 2022 ↩︎. Besides the obvious examples of mining regions, whose future today remains uncertain, we can think of such towns as Różan – the only location in Poland with a radioactive waste repository. The fee for using the landfill constitutes an essential part of the local budget. In turn, the reluctance towards nuclear energy development founds the German energy transition (Energiewende), whose proponents organized the 1970s opposition to plans for developing large nuclear and coal plants, which altered the character of agricultural regions   5  5  O. Renn, J. P. Marshall, Coal, nuclear and renewable energy policies in Germany: From the 1950s to the Energiewende”, „Energy Policy”, 99/2016, 224–232, doi.org/10.1016/j.enpol.2016.05.004 (data dostępu 29.05.24) ↩︎. Thus, opposition movements reveal the other side of living in close proximity of power infrastructure.

 

Thus, in the departing model of relations between the energy industry and society, the matter of electricity enjoyed a sporadic interest of public opinion: the subject appeared at moments of systemic crises (such as blackouts), in selected places (mining regions, power plants, energy waste landfills), or was evoked by niche activist groups who protested against certain investments. However, today popular engagement in the matter is becoming the rule, and the three examples above encompass new fields and situations, engaging an ever-larger audience. Moreover, in each case, the reason for the increased involvement lies in the demur to the uncertain future resulting from the climate crisis. What are the key issues here?

 

For one, the modern energy industry lies at the heart of the crisis narrative from which one cannot escape and which shapes our future   6  6  cf. e.g. D. Wallace-Wells, Ziemia nie do życia. Nasza planeta po globalnym ociepleniu, przeł. J. Spólny, Zysk i S-ka, Poznań 2019 ↩︎: the climate crisis. At the same time, electric utilities have entered a huge crisis as well, partly due to the implementation of instruments such as the EU Emissions Trading System and other state-specific and EU-level emission reduction goals. Electric utilities now seek a new modus operandi to ensure their survival, income, and ability to implement the tasks for which it was established in a turbulent time of transition. The future of “Big Energy” has never been as uncertain as today.

 

Secondly, along with the development of renewable energy sources – mostly from the sun and wind – almost everywhere on Earth can become a “neighbour” of a power plant; even if it means just a few photovoltaic panels on the local church roof. With an increasing number of such sources, the need grows to coordinate new modes of cooperation for creating a stable system based on such bottom-up investments. Equally important to installing energy sources are rules on energy transfer, storage, and trading. Furthermore, what plays an increasingly important role in the complicated task of balancing electricity coming from intermittent (weather-dependent) sources are consumer decisions. This refers not only to direct investors ready to put PV on their roofs but also to people who are willing to change their energy consumption patterns to flatten the curve of demand. That results in an urgent need for new socio-technological solutions that allow to accelerate transition   7  7  B. K. Sovacool, H. Brugger, I. Brunzema, A. Dańkowska, D. Wemyss, A-L. Vernay, R. Betz i in., Social Innovation Supports Inclusive and Accelerated Energy Transitions with Appropriate Governance, “Communications Earth and Environment”, 4 (1)/2023, https://doi.org/10.1038/s43247-023-00952-w. (data dostępu 29.05.24) ↩︎. At the same time, mining regions and areas centred around “old” power plants have not lost their significance. On the contrary, their future after coal has become one of the most important discussion points regarding energy system transformation   8  8  K. Gürtler, D. Löw Beer, J. Herberg, Scaling Just Transitions: Legitimation Strategies in Coal Phase-out Commissions in Canada and Germany, “Political Geography” 88/ 2021, https://doi.org/10.1016/j.polgeo.2021.102406 (data dostępu 29.05.24) ↩︎.

 

Thirdly, the social movements focused on energy grow in scale: both in terms of local protests – like the Polish resistance against new opencast lignite mining facilities and shale gas development   9  9  por. A. Stasik, Wytwarzania wiedzy o zbiorowości. Gaz łupkowy jako wyzwanie dla zbiorowości, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń 2019; Szolucha A., Gaz łupkowy w Polsce. Historia, magia, protest, Wydawnictwo Naukowe PWN, Warszawa 2021, DOI: https://doi.org/10.53271/2021.037; S. Hielscher, J. Wittmayer, A. Dańkowska, Social Movements in Energy Transitions: The Politics of Fossil Fuel Energy Pathways in the United Kingdom, the Netherlands and Poland, “Extractive Industries and Society” 10/2022, DOI: 10.1016/j.exis.2022.101073 (data dostępu 29.05.24) ↩︎, – and global movements, such as the Climate Strike and Extinction Rebellion, with their more universal claims. The emotion that lays the foundation for engagement in these movements is fear: fear for the Earth’s future and the fact that it will become uninhabitable because of our choices relating to energy usage and production. Even if these social movements lost its impetus after the COVID-19 pandemic, they proved that the pressure from street actions and expert reports may go hand in hand an empower one another.

 

As a result, the energy system of the future does not belong exclusively to engineers hired by electric utilities, although their voice, knowledge, and experience remain invaluable. Today, more people than ever understand that our decisions about energy system design will shape our common – and hardly avoidable – future, so they want to be included in the process. The chance to design the future in the context of energy will not happen in ten, twenty, or thirty years from now, when we will be struggling with new and more severe consequences of the climate crisis. We design the future here and now: the decision to build a vast infrastructure may engender sunken cost problems, thus making it extremely difficult to later withdraw from an undertaking such as a new power plant or mining facility. Furthermore, today’s choices determine the future in the most elementary meaning related to physics, which we may capture in our models: our choices add to the amount of CO2 particles that will remain in the atmosphere. Anyone who wants to have a say about the future must have a say about energy policy – today. “People” and “politics” have joined the conversation about the future shape of the energy system as petty investors, as consumers encouraged to change their behavioural patterns, as clients threatened by growing prices, as citizens jeopardized by the rising global temperatures, and as members of society concerned about its future. We can already see that the energy system design has already begun to transform toward the goal of stopping climate change; even if the effects remain unsatisfactory, considering how slowly governments implement the goals to decrease energy-related greenhouse gas emissions.

 

Below, I will envisage such a common world-learning protocol and procedures for designing energy systems – from energy generation through transmission to its various applications – that may prove useful in dealing with this situation. I will describe a speculative and normative attempt based on my research experience, which refers to the interconnected transformations of energy and society in the context of shale gas exploration   10  10  A. Stasik, Wytwarzania wiedzy o zbiorowości. Gaz łupkowy jako wyzwanie dla zbiorowości, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń 2019; A. Stasik, Global controversies in local settings: anti-fracking activism in the era of Web 2.0, „Journal of Risk Research”, 21(12)/2018a, 1562–1578, doi.org/10.1080/13669877.2017.1313759 (data dostępu 29.05.24); A. Lis, A. Stasik, Hybrid forums, knowledge deficits and the multiple uncertainties of resource extraction: Negotiating the local governance of shale gas in Poland. „Energy Research & Social Science”, 28(4)/2017, 29–36, doi.org/10.1016/j.erss.2017.04.003 (data dostępu 29.05.24) ↩︎, building energy clusters   11  11  A. Stasik, A. Dańkowska, Multiscalar institutional work of system-building sustainable entrepreneurs in transitioning coal regions: case of energy cluster, “Social Entrepreneurship Review”, Vol. 1/2024, DOI: 10.15678/SER.2023.1.xx ↩︎, conducting urban experiments with social innovations concerning energy   12  12  J.M. Wittmayer J. M., et al., Beyond instrumentalism: Broadening the understanding of social innovation in socio-technical energy systems. „Energy Research and Social Science”, 70/2020, doi.org/10.1016/j.erss.2020.101689 (data dostępu 29.05.24); A. Dembek, A. Stasik, M. Strumińska-Kutra, A. Dańkowska, Building common urban futures: City Labs for urban energy transitions. https://sonnet-energy.eu/wp-content/uploads/2022/02/Deliverable_SONNET_CityLabGuide.pdf (data dostępu: 24.05.24) ↩︎, and local attempts at decarbonizing heat networks   13  13  A. Stasik, A. Dańkowska, Multiscalar institutional work of system-building sustainable entrepreneurs in transitioning coal regions: case of energy cluster, “Social Entrepreneurship Review”, Vol. 1/2024, DOI: 10.15678/SER.2023.1.xx ↩︎.

 

Common World-Learning Protocol

Why a common world-learning protocol should be part of the new method for designing energy systems and solutions? What would such a protocol even look like? My assumption, shared by the scholars of science and technology studies (STS), is that every society has its own nature and its own culture   14  14  B. Latour, We have never been modern, transl. C. Porter, Harvard University Press, Cambridge Massachusetts 1993; A. Stasik, Wytwarzania wiedzy o zbiorowości. Gaz łupkowy jako wyzwanie dla zbiorowości, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń 2019 ↩︎. This certainly means not that we can invent this nature freely and that our fantasies about it would become reality. Instead, this means that we learn about nature thanks to and through a series of social institutions: from laboratories and protocols for data collection in the field through academic literature circulation – which records the course and results of scientific investigations – along with handbooks, schools, and the popularisation of science via Instagram or YouTube to the increasingly popular undertakings from the field of citizen science   15  15  B. Latour, Pandora’s Hope. Essays on the Reality of Science Studies, Harvard University Press, Cambridge, Massachusetts 1999; M. Callon, P. Lascoumes, Y. Barthe, Acting in an Uncertain World: an Essay on Technical Democracy, The MIT Press, Cambridge 2009 ↩︎. The nature of these institutions incessantly changes, influencing what aspects of reality we learn and how we learn about them, but also what we will ignore.

 

The organization of knowledge production influences research topic selection. The physical mechanisms responsible for climate change were discovered thanks to a military-related financial boost in the field of meteorology   16  16  S. R. Weart, The Discovery of Global Warming, Harvard University Press, Cambridge 2003 ↩︎. However, learning about climate change does not end with creating ever-better models of the physical phenomenon. This learning process also entails discovering the consequences of described changes for our understanding of what it means to be human, a parent, a citizen, a politician in the era of climate crisis; how does it influence our designing of a house, a city, or a power grid? The job of deciphering the meaning and consequences of climate change lies in the hands of not just scientists and engineers but also artists, humanities scholars, activists, and designers. The discussion about the notion of Anthropocene is a good example of such transdisciplinary cooperation   17  17  E. Bińczyk, Epoka Człowieka. Retoryka i Marazm Antropocenu, Wydawnictwo Naukowe PWN, Warszawa 2018 ↩︎. The job requires integrating various tools and modalities of knowledge production inherent not only in science but also in art, design, and ethics. The voice of empirical researchers and modellers is very important and should often take the lead, but its power should not be used to curtail discussion and extinguish the plurality of voices. On the contrary, the empirical voice should help to enhance the plurality in order to map the potential for designing our uncertain future together.

 

This modus operandi rarely agrees with the traditional division of scientific disciplines. Rooted in the nineteenth century, the division has been used ever since to systemize the work of academic institutions and construct society’s understanding of nature. Although the education and research in the disciplines retain their usefulness, the most exciting and valid research topics have gradually moved over the past few decades towards new fields, organized not by the logic of a discipline’s development but by the need to find diversified knowledge about certain phenomena   18  18  see M. Gibbons, et al., The New Production of Knowledge. The Dynamics of Science and Research in Contemporary Societies, Sage, London 1994 ↩︎. This entails a shift towards interdisciplinary research. Some research related to energetics is also becoming similarly interdisciplinary: it engages electrical engineers, specialists in finance, business models, and social innovation, scholars of regional development and water relations, psychologists, and emissions modelling specialists   19  19  B. K. Sovacool et al., Integrating social science in energy research, „Energy Research and Social Science”, 6/2015, 95–99. doi.org/10.1016/j.erss.2014.12.005 (data dostępu 29.05.24) ↩︎. This type of research will become increasingly relevant, and in fact, it is essential for building knowledge about the climate crisis and ways to limit its impact, also in terms of building new energy solutions.

 

However, even research in a diversified milieu of scholars may not suffice; the next step should be to invite people and communities that are not scholars to join the research process   20  20  A. Stasik, Obywatel współbadacz, czyli o pożytkach z dzielenia laboratorium – renegocjowanie umowy pomiędzy naukowcami a amatorami. „Studia Socjologiczne” 219(4)/2015a: 101–126 ↩︎. Among the traditions that can serve as a point of reference in this context is the action research methodology, meaning participatory technology assessment, which employs such techniques as citizens’ panels and methods of engaging end-users in the process of designing solutions from which they are to benefit so that they can be adapted to their needs as closely as possible. An approach to research known as Responsible Research and Innovation provides one of the ways of creating institutional frameworks to enable and support such collaboration   21  21  A. Stasik, Narracje o przyszłości a projektowanie innowacji – perspektywa studiów nad nauką i technologią, „Stan Rzeczy. Teoria Społeczna. Europa Środkowo-Wschodnia”, 14/2018b, 157–177 ↩︎. Another approach comes with the growing popularity of such methods as urban/city labs, which seek to create platforms that help to collaboratively find and test specific solutions to local problems with the participation of representatives from local governments, academia, business, and citizens   22  22  F. Nevens F et al., Urban Transition Labs: co-creating transformative action for sustainable cities, „Journal of Cleaner Production”, 50/2013: 111–122 ↩︎. The last solution is apt for supporting innovation in the field of energetics, as I discovered in the SONNET project that sought to create urban laboratories in six European cities   23  23  A. Dembek, A. Stasik, M. Strumińska-Kutra, A. Dańkowska, Building common urban futures: City Labs for urban energy transitions. https://sonnet-energy.eu/wp-content/uploads/2022/02/Deliverable_SONNET_CityLabGuide.pdf (data dostępu: 24.05.24) ↩︎. Just as important as the institutionalized forms of cooperation that support a collective identification of potential solutions is the admission of people not related to academia: those rarely asked for their opinion, e.g. residents who oppose the extraction of fossil fuels or activists who block urban traffic while protesting against the inaction in face of climate crisis.

 

The inclusion of a grassroots impulse is clearly more difficult than other methods. The actions above are close to my perspective, but in the years and decades to come, we may expect equally forceful social movements to protest against our efforts to redesign the energy system towards a zero-carbon goal. These will be born out of the fear (justified or not) that some interests and identities might be shaken or broken, such as recent protest in Europe against Green New Deal and Nature Restoration Law. This trend has already been heralded by the yellow vests protests in France, an example of opposition to the country’s decarbonisation strategy that can potentially affect ordinary people. The impending increases in household electricity bills in Poland may also generate public anger, even though they are not caused by an ambitious policy but rather by prior negligence. Some of the movements and voices against climate policy are likely to be anti-intellectual, namely negating the methods and findings of climate studies and other disciplines that help us foresee the future. Such an event vividly appeared during the Covid-19 pandemic, when anti-vaccine movements played a significant role in the unnecessary loss of tens of thousands of people. Learning this experience to properly frame discussions about energy, we must prepare space that would allow for common learning about the world and include the manifold voices in the conversation about potential solutions; this must include the voices of people and milieus that feel threatened by the coming changes, while at the same time excluding the voices of vandals, trolls and paid saboteurs who paralyse our ability to gain knowledge, design, and act by undermining the principles of communal discussion.

 

As the climate crisis intensifies, the pressure will be growing on social institutions that were built for a colder world. The changes will also affect the education and research systems. Our task is to prepare ourselves to reject what is irrelevant in scholarly work while retaining and reinforcing our ability to describe, act, and design in line with modern science. While a lot of things will perish and transform, we must make sure that laboratories will not cease their operations, but instead, more than ever join the effort to find solutions to our common problems. I believe that we can start working on this already, by building strong, inclusive ways to cooperate with representatives from various disciplines. An example of such actions can be given by the collaboration between technical and social science scholars who work on low-carbon solutions for district heating for the inhabitants of Legionowo, Poland, in the project GREEN HEAT.

 

Design for a Warmer World

What happens when we bring these considerations down to earth? We know that the global carbon budget is running low. Thanks to advances in climate science, we can estimate the effect of energy and other emissions on further heating. Hence, we can decide by how much we must reduce emissions to curb global heating below 1.5 or 2 degrees Celsius. We must remember that the Earth’s surface does not heat up in a uniform manner and that 2 degrees globally may likely mean 4 degrees in Poland. Therefore, even in the most optimistic and ambitious scenario, we should agree that we will be living in a totally different climate from that of our parents.

 

Reducing global warming requires us to search for new solutions that will enable a radical reduction of energy consumption – not by 10% but ten-fold – in order to achieve the net zero-carbon emissions in 30 years. Designing for the future will reflect our understanding of energy as a valuable resource, whose excessive use might bring us closer to the vision of an uninhabitable world. However, we do not want to give up on the things that make our lives good and pleasant: our thermal comfort or the possibility of safe food storage and preparation. Therefore, our goal is to “conceal” from the user the scarcity of energy availability so that their needs are still satisfied but with a lower energy cost.

 

Technical solutions that meet these criteria are often already available but not widely applied. Take the building industry as an example: you might be surprised to learn that there are still new buildings being constructed that consume much more energy than they produce. Since the technologies needed to design and build in a low-energy way are already available, the reason for this stagnation must lie in the inertia of social institutions, exemplified by ineffective regulations   24  24  see J. Sokołowski, S. Bouzarovski, Decarbonisation of the Polish Residential Sector between the 1990s and 2021: A Case Study of Policy Failures, “Energy Policy”, 163/2022, DOI: 10.1016/j.enpol.2022.112848. (data dostępu 29.05.24) ↩︎, underqualified designers and builders, and low awareness of investors and customers. The latter seem still inclined towards building for a cooler world of abundant and cheap electricity produced from coal; a world they remember from their childhood; unfortunately, they will be inhabiting those buildings in a radically different world. Apart from that, an even greater challenge lies in adapting buildings that already exist: (re)designing them means looking for ways to redirect what is at hand towards sustainability. This action will not only halt further climate change, but it will also even out the chances since living in energy-intensive dwellings in times of rising energy prices will limit other life opportunities of the inhabitants. Thus, delivering appropriate solutions is an act of solidarity with the inhabitants-users and the climate, but also a political act that will help prevent a social backlash against the projected changes by people “imprisoned” in old buildings, forced to pay disproportionately high transition costs – in energy bills.

 

However, even if a house is designed to be low-energy, this cost is impossible to eliminate entirely. Thus, another important aspect of designing for the future is to make prosumption default: buildings should be treated as spaces that enable sustainable energy production. In 2024 in Poland, there are already some 1300 thousand prosumer installations, making prosumerism standard for more then 3 million people in these households. As the use of small-scale, decentralized energy sources becomes more widespread, what is becoming crucial is for energy to be consumed or stored when it is abundant and saved for when it is scarce. Currently, this need is reflected by net-billing system, or dynamic energy prices for prosumers. The situation implies a design that includes not only that energy is valuable but also that its availability (and price) varies according to the season, time of day, weather, or natural conditions in a given area. Time will tell whether we cede the task of adapting to energy availability to intelligent appliances or whether we will be forced into a conscious change in behaviour. Therefore, besides relying on smart appliances, we may plan our energy-intensive activities for hot and windy weather; something unthinkable in the current energy regime, in which the availability and price of energy are almost totally unrelated to weather conditions.

 

Moreover, intermittency poses a challenge to design beyond the level of an individual building. Here, we must seek solutions that will enable us to synchronize generation, usage, and storage so that energy would be utilized locally as much as possible. We may do this not only thanks to the use of appropriate technology but also through the application of pertinent regulatory frameworks and business models. It is yet unclear whether the current conditions allow for building a new energy system based on popular co-ownership following citizen energy. At this moment, the scale of the challenge, risk, and complexity tend to make it more likely that low low-risk-averse companies will move first, expecting profit should they succeed. Thus, there is a possibility of an energy system being privatized by competing businesses, which may engender new risks.

 

I have briefly discussed the challenges in the housing sector, although it is one of the easiest sectors for decarbonization, precisely because many of the solutions and practices are already known, although they are not sufficiently widespread. However, the strategy for achieving zero net emissions by 2050 – together with such milestones as a ban on registering new petrol-fuelled cars from 2035 – makes one consider a redesigning of such sectors as steel production, the chemical industry, and transportation, including aviation and freight.

 

The urgency and complexity of these challenges may prompt us to seek shortcuts, such as focusing solely on cost efficiency while neglecting other dimensions of the process. However, the resulting  oversimplification often leads to the need for costly adjustments in later stages of plan implementation. Instead, I propose that in our search for new solutions, we strive to work according to a new protocol: taking into account the interests and values of individuals, groups, and communities that are easily overlooked, as well as the knowledge of diverse participants in social life. Let us shape those solutions and remember that new technologies and elements of infrastructure are quite flexible until they become standardized, petrified by legislation, and certified by user habits and expectations. Thus, let us create niches for inter- and transdisciplinary cooperation. One example could be the idea behind the 2022 International Architecture Biennale Rotterdam (IABR), where designers were invited to collaborate with representatives of initiatives that create radical socio-technological innovations for sustainable transition, thereby shaping new institutions that will allow for these initiatives to replace the currently dominant solutions. Such places and events cultivate spaces of collective knowledge production and promote solutions that enable “regular people” to be included in business plans – thus highlighting their needs and ideas despite insufficient expert knowledge or investment capital. Let us make extended community collaboration the default form of producing knowledge and solutions for the energy systems of the future.

The creation of this text was enabled by research projects: Sonata grant awarded by the National Centre for Science (No 2018/31/D/HS6/02972) and European Union Horizon grant (No 837498).

I would like to thank Alicja Dańkowska, Agata Dembek, Marta Strumińska-Kutra for the discussions about the energy of the future.

Bibliography:

Bińczyk E., Epoka Człowieka. Retoryka i Marazm Antropocenu, Wydawnictwo Naukowe PWN, Warszawa 2018.

Bridge B.A., Adhikari D., Fontenla M. Electricity, income, and quality of life, „The Social Science Journal”, 53:1/2016, 33–39, doi.org/10.1016/j.soscij.2014.12.009 (data dostępu 29.05.24).

Bukowska X., Iwińska K. red., Gender and Energy Transition: Case Studies from the Upper Silesia Coal-mining Region, Springer, Berlin/Heidelberg 2022.

Callon M., Lascoumes P., Barthe Y. Acting in an Uncertain World: an Essay on Technical Democracy, The MIT Press, Cambridge 2009.

Dembek A., Stasik A., Strumińska-Kutra M., Dańkowska A., Building common urban futures: City Labs for urban energy transitions. https://sonnet-energy.eu/wp-content/uploads/2022/02/Deliverable_SONNET_CityLabGuide.pdf (data dostępu: 24.05.24).

Devine-Wright P., Energy citizenship: Psychological aspects of evolution in sustainable energy technologies. [w:] Governing Technology for Sustainability, red. Murphy J., https://doi.org/10.4324/9781849771511. (data dostępu 29.05.24).

Gibbons M., Limoges C., Nowotny H., Schwartzman S., Scott P., i Trow M., The New Production of Knowledge. The Dynamics of Science and Research in Contemporary Societies, Sage, London 1994.

Grodzińska-Jurczak M., Nauka obywatelska: zmiana paradygmatu nauki czy jedynie pomocnicza procedura badawcza?, ”Trzeci Sektor”, 4 (47)/2019, 14–27, https://doi.org/10.26368/17332265-047-3-2019-1, (data dostępu 29.05.24).

Gürtler K., Löw Beer D., Herberg J., Scaling Just Transitions: Legitimation Strategies in Coal Phase-out Commissions in Canada and Germany, “Political Geography” 88/ 2021, https://doi.org/10.1016/j.polgeo.2021.102406 (data dostępu 29.05.24).

Hielscher S., Wittmayer J., Dańkowska A., Social Movements in Energy Transitions: The Politics of Fossil Fuel Energy Pathways in the United Kingdom, the Netherlands and Poland, “Extractive Industries and Society” 10/2022, DOI: 10.1016/j.exis.2022.101073 (data dostępu 29.05.24).

Irwin B.R., Hoxha K., Grépin K.A., Conceptualising the effect of access to electricity on health in low- and middle-income countries: A systematic review, „Global Public Health”, 15:3/2020, 452–473, DOI: 10.1080/17441692.2019.1695873 (data dostępu 29.05.24).

Latour B., Pandora’s Hope. Essays on the Reality of Science Studies, Harvard University Press, Cambridge, Massachusetts 1999.

Latour B., We have never been modern, transl. C. Porter, Harvard University Press, Cambridge Massachusetts 1993.

Lis A., Stasik A., Hybrid forums, knowledge deficits and the multiple uncertainties of resource extraction: Negotiating the local governance of shale gas in Poland. „Energy Research & Social Science”, 28(4)/2017, 29–36, doi.org/10.1016/j.erss.2017.04.003 (data dostępu 29.05.24).

Nevens F., Frantzeskaki N., Gorissen L., Loorbach D., Urban Transition Labs: co-creating transformative action for sustainable cities, „Journal of Cleaner Production”, 50/2013: 111–122.

Renn O., Marshall J. P., Coal, nuclear and renewable energy policies in Germany: From the 1950s to the Energiewende”, „Energy Policy”, 99/2016, 224–232, doi.org/10.1016/j.enpol.2016.05.004 (data dostępu 29.05.24).

Ritchie H., Roser M., 2020 – Energy. OurWorldInData.org. ourworldindata.org/energy (data dostępu 06.10.21).

Sokołowski J., Bouzarovski S., Decarbonisation of the Polish Residential Sector between the 1990s and 2021: A Case Study of Policy Failures, “Energy Policy”, 163/2022, DOI: 10.1016/j.enpol.2022.112848. (data dostępu 29.05.24).

Sovacool B. K., Brugger H., Brunzema I., Dańkowska A., Wemyss D., Vernay A-L, Betz R. i in., Social Innovation Supports Inclusive and Accelerated Energy Transitions with Appropriate Governance, “Communications Earth and Environment”, 4 (1)/2023, https://doi.org/10.1038/s43247-023-00952-w. (data dostępu 29.05.24).

Sovacool B. K., Ryan S. E., Stern,P. C., Janda K., Rochlin G., Spreng D., Pasqualetti, M. J., Wilhite H., Lutzenhiser L., Integrating social science in energy research, „Energy Research and Social Science”, 6/2015, 95–99. doi.org/10.1016/j.erss.2014.12.005 (data dostępu 29.05.24).

Stasik A., Global controversies in local settings: anti-fracking activism in the era of Web 2.0, „Journal of Risk Research”, 21(12)/2018a, 1562–1578, doi.org/10.1080/13669877.2017.1313759 (data dostępu 29.05.24).

Stasik A., Jak Prowadzić Partycypacyjną Ocenę Technologii? Przegląd Metod i Technik. Studia BAS, 3(43)/2015b, 87–112.

Stasik A., Dańkowska A., Multiscalar institutional work of system-building sustainable entrepreneurs in transitioning coal regions: case of energy cluster, “Social Entrepreneurship Review”, Vol. 1/2024, DOI: 10.15678/SER.2023.1.xx

Stasik A., Narracje o przyszłości a projektowanie innowacji – perspektywa studiów nad nauką i technologią, „Stan Rzeczy. Teoria Społeczna. Europa Środkowo-Wschodnia”, 14/2018b, 157–177.

Stasik A., Obywatel współbadacz, czyli o pożytkach z dzielenia laboratorium – renegocjowanie umowy pomiędzy naukowcami a amatorami. „Studia Socjologiczne” 219(4)/2015a: 101–126.

Stasik A., Wytwarzania wiedzy o zbiorowości. Gaz łupkowy jako wyzwanie dla zbiorowości, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń 2019.

Szolucha A., Gaz łupkowy w Polsce. Historia, magia, protest, Wydawnictwo Naukowe PWN, Warszawa 2021DOI: https://doi.org/10.53271/2021.037

Wallace-Wells D., Ziemia nie do życia. Nasza planeta po globalnym ociepleniu, przeł. J. Spólny, Zysk i S-ka, Poznań 2019.

Weart S. R., The Discovery of Global Warming, Harvard University Press, Cambridge 2003.

Wittmayer J. M., de Geus T., Pel B., Avelino F., Hielscher S., Hoppe T., Mühlemeier S., Stasik A., Oxenaar S., Rogge K. S., Visser V., Marín-González E., Ooms M., Buitelaar S., Foulds C., Petrick K., Klarwein S., Krupnik S., de Vries G., Härtwig A., Beyond instrumentalism: Broadening the understanding of social innovation in socio-technical energy systems. „Energy Research and Social Science”, 70/2020, doi.org/10.1016/j.erss.2020.101689 (data dostępu 29.05.24).